This May Surprise You — Technique Matters When Case Filling
The way you drop powder in the case will affect your max powder volume and the load density. Look at the photo above. These photos show the SAME 30.6 grains of powder using four different fill methods. If you are working with a powder that is below max safe pressure at your current “full case” (with room left for the bullet), and you want to get more velocity with that powder, consider a different case-filling technique.
Most of us assume that if we weigh our powder carefully (down to the tenth of a grain or less) we can achieve a uniform powder fill from case to case in our handloads. Weighing does ensure that the weight of the propellant in each case is the same, but is the column of powder the same by volume each time? “Not necessarily” is the answer. An interesting experiment by our friend Boyd Allen demonstrates that the manner in which you place kernels in the case can make a significant difference in the height of the powder column within the brass case.
Using a Gempro 250 scale, Boyd measured exactly 30.6 grains of Vihtavuori N-133 powder. He then inserted this powder in the same cartridge case multiple times. (The case has a fired primer in place.) But here is the key — Boyd used various filling techniques. He did a slow fill, and a fast fill, and he also experimented with tapping and drop tubes. What Boyd discovered was that you can start with the exact same weight of powder (in fact the very same set of kernels), yet end up with vary different fill heights, depending on how you drop the kernels into the case. Look at the photos. Despite variations in lighting, the photos show the same 30.6 grains of powder, placed in the same cartridge, with four different methods.
Using funnels with long drop tubes packs kernels more tightly, creating a shorter powder column. That allows you to get more propellant (by weight) into the case.
Boyd Explains the Procedure Used for his Experiment.
EDITOR’s NOTE: So there is no misunderstanding, Boyd started with a weighed 30.6 grain charge. This identical charge was used for ALL four fills. After a fill the powder was dumped from the case into a pan which was then used for the next fill technique to be tried. So, the powder weight was constant. Indeed the exact same kernels (of constant weight and number) were used for each fill.
Boyd writes: “I used the same powder for all fills, 30.6 gr. on a GemPro 250 checked more than once. All fills employed the same RCBS green transparent plastic funnel. The fast drop with the funnel only overflowed when it was removed from the case neck, and 15 granules of powder fell on the white paper that the case was sitting on. The fast-funnel-only drop with tapping, was done with the funnel in place and the case and funnel in one hand, while tapping the case body with the index finger hard, many times (about 20 fast double taps). My idea here was to “max out” the potential of this tapping technique.
The slow drop with the funnel and 10″-long .22 cal. Harrell’s Precision drop tube, was done by holding the scale pan over the funnel and tapping the spout of the pan repeatedly on the inside of the funnel about 1/3 down from the top, with the scale pan tilted just enough so that the powder will just flow. Many taps were involved, again, to max out the technique.
Again, to be clear, after each case filling, the powder was poured from the case back into the scale pan carefully. You may notice the similarity between the fast drop with the drop tube, and the funnel only with tapping. Although I did not photograph it, fast tube drop and tapping (combined) improved on tapping alone, but only to about half as far down the neck as the slow with drop tube. Due to the endless possible permutations, I picked four and left it at that.
I believe that I can make the rough judgment that the scale pan funnel and drop tube technique, which involved a longer drop period, and probably less velocity at the top of the tube, left more room in the top of the case neck than the slow drop from the measure with the same drop tube. You have both pictures, so you can make the comparison.” — Boyd
Does Powder Column Height Variance Make a Difference?
Boyd’s experiment proves pretty conclusively that the method of dropping a given weight of powder can affect the height of the powder column in the case and the degree of powder compression (when a bullet is seated). He showed this to be true even when the exact same set of kernels (of constant weight) was used in repetitive loadings. This raises some interesting questions:
1. Will subsequent cartridge transport and handling cause the powder to settle so the variances in powder column height are diminished?
2. If significant inconsistencies in powder column height remain at time of firing, will the difference in fill level hurt accuracy, or result in a higher extreme spread in velocity?
3. Is there any advantage (beyond increased effective case capacity) for a tight (low level) fill vs. a loose (high level) fill?
We don’t know the answer to these follow up questions. This Editor guesses that, if we tested low-fill-height rounds vs. high-fill-height rounds (all with same true fill quantity by weight), we might see meaningful differences in average velocity. I would also guess that if you fired 10 rounds that exhibited quite a difference in powder column heights, you might see a higher ES/SD than if you shot 10 rounds loaded with a very consistent powder column height (either high or low). But further testing is needed to determine if these predictions are true.
Similar Posts:
- How Case Filling Method Can Alter Powder Column Height
- Powder Column Height Varies with Case-Filling Methods
- Advanced Reloading: Controlling Cartridge Powder Column Height
- Precision Powder Funnels from 21st Century Shooting
- High-Quality Powder Funnels from 21st Century Shooting
Share the post "This May Surprise You — Technique Matters When Case Filling"
Tags: Boyd Allen, Drop Tube, Extreme Spread, Load Velocity, Powder Column, Powder Kernels, Reloading
Illustrates why a charge thrower might not put the same amount in each case.
Almost answers the questions, but leaves some un-answered.
Seems to me there are few permutations missing here with the drop tube length and slow, or even VERY slow drops. In this case I can forsee at least 5 more drops.
As it is I’m left to wonder if it’s the slow drop itself (no other permutations listed so who knows?) or the combination of very slow and the drop tube length.
Fortunately the tests that you propose can be easily done by anyone. My purpose was to point out that there are multiple factors when it comes to getting more powder in a case. Over the years there has been a lot written about using long drop tubes. but my experience has taught me that drop rate is just as important, and that you need both if you want to maximize fill. Readers may not know it, but in short range benchrest it has been common to throw charges directly into cases from a powder measure, and that is the reason that clear drop tubes are needed, so that fill rate can be monitored and controlled.
You can always use an electric toothbrush without the brush head to settle a charge.
I have used a drop tube for years! I make them from arrow shafts. https://youtu.be/HK2pXwjFP7I
oops. Also didn’t realize this was a repost of an older article from 2012. Thanks for the reply!
and yes now that I’ve come upon it I’ve been writing up a long test procedure as I’m fascinated…