Eurooptic vortex burris nightforce sale




teslong borescope digital camera barrel monitor


As an Amazon Associate, this site earns a commission from Amazon sales.









September 16th, 2024

Bullet Flight Video Shows Bullet Shock Wave and Base Drag

Science Accuracy Academy bullet video Schlieren movie shock wave capture

Ever wondered what the air around a moving supersonic bullet really looks like? Check out this video from the Bryan Litz Ballistics Facebook page. This is a Schlieren video* of a 6mm 109gr Berger LRHT bullet at about 2800 fps as fired from Francis Colon’s PRS rifle at the Applied Ballistics Lab.


Bryan Litz notes: “You can clearly see the compression (shock) wave at the front of the bullet. A compression wave is formed when the air has to move faster than the speed of sound to get out of the way, which is certainly the case for this bullet which is moving about 2.5 times the speed of sound (Mach 2.5).

That shock wave is the ‘snap’ you hear when bullets fly past you if/when you’re downrange. Also, compressing the air into a shockwave takes energy, and that energy comes directly out of the forward velocity of your bullet and gets converted into heat and noise as the shock wave forms and dissipates.

The turbulent wake at the base of the bullet shows where/how base drag applies. The third and smallest component of drag for a supersonic bullet is skin friction drag, which is a viscous boundary layer effect, and is the least visible in this image. So as you head to the range or the hunting stand, think about the absolute violence your bullets are committing in the atmosphere, before they even reach the target!”

Subscribe to the Science of Accuracy Academy for more precision rifle and long range shooting content. LINK: TheScienceofAccuracy.com.


* Schlieren imaging makes air flow features visible. SEE Schlieren Photography Wikipedia page.

Permalink - Videos, Bullets, Brass, Ammo, Tech Tip No Comments »
April 23rd, 2024

Tech Tuesday: Amazing Schlieren Imaging of Bullet in Flight

bullet flight video shock wave boundary layer base drag video applied ballistics

Every Tuesday an interesting technical feature is posted on the Applied Ballistics Facebook Page. For today’s 4/23/24 “Tech Tuesday”, a fascinating video of a bullet in flight was posted. This Schlieren video illustrates a 6mm 109gr Berger LRHT bullet traveling at 3163 FPS. The stunning video reveals the bullet shockwave and the turbulent wake. Check it out:

About the Schlieren Imaging Process — What It Shows

Schlieren Imaging is a way of making airflow features visible. You can clearly see the compression (shock) wave at the front of the bullet. A compression wave is formed when the air has to move faster than the speed of sound to get out of the way, which is certainly the case for this bullet which is moving about 2.5 times the speed of sound (Mach 2.5). That shock wave is the ‘snap’ you hear when bullets fly past you if/when you’re downrange. Also, compressing the air into a shockwave takes energy, and that energy comes directly out of the forward velocity of your bullet and gets converted into heat and noise as the shock wave forms and dissipates. The turbulent wake at the base of the bullet shows where/how base drag applies. The third and smallest component of drag for a supersonic bullet is skin friction drag, which is a viscous boundary layer effect, and is the least visible in this image.


Above is a second Schlieren imaging video. This shows a 6mm 109gr Berger LRHT bullet at ~2800 fps as fired from a PRS rifle at the Applied Ballistics Lab. Bryan Litz notes: “You can clearly see the compression (shock) wave at the front of the bullet. A compression wave is formed when the air has to move faster than the speed of sound to get out of the way, which is certainly the case for this bullet which is moving about 2.5 times the speed of sound (Mach 2.5).”

Science of Accuracy Exclusive Content for Subscribers

Applied Ballistics has a huge archive of shooting-related ballistics and technical information plus exclusive videos. You can access all this information plus great members-only podcasts by subscribing to the Science of Accuracy Academy for $9.95/month.

bullet flight video shock wave boundary layer base drag video applied ballistics

Learn more at the Applied Ballistics Science of Accuracy Academy website.

Permalink - Videos, Bullets, Brass, Ammo, Tech Tip No Comments »
October 6th, 2023

Bullet Flight Video Shows Shock Wave + Bullet Base Drag

Science Accuracy Academy bullet video Schlieren movie shock wave capture

Ever wondered what the air around a moving supersonic bullet really looks like? Check out this video from the Bryan Litz Ballistics Facebook page. This is a Schlieren video* of a 6mm 109gr Berger LRHT bullet at about 2800 fps as fired from Francis Colon’s PRS rifle at the Applied Ballistics Lab.


Bryan Litz notes: “You can clearly see the compression (shock) wave at the front of the bullet. A compression wave is formed when the air has to move faster than the speed of sound to get out of the way, which is certainly the case for this bullet which is moving about 2.5 times the speed of sound (Mach 2.5).

That shock wave is the ‘snap’ you hear when bullets fly past you if/when you’re downrange. Also, compressing the air into a shockwave takes energy, and that energy comes directly out of the forward velocity of your bullet and gets converted into heat and noise as the shock wave forms and dissipates.

The turbulent wake at the base of the bullet shows where/how base drag applies. The third and smallest component of drag for a supersonic bullet is skin friction drag, which is a viscous boundary layer effect, and is the least visible in this image. So as you head to the range or the hunting stand, think about the absolute violence your bullets are committing in the atmosphere, before they even reach the target!”

Subscribe to the Science of Accuracy Academy for more precision rifle and long range shooting content. LINK: TheScienceofAccuracy.com.


* Schlieren imaging makes air flow features visible. SEE Schlieren Photography Wikipedia page.

Permalink - Videos, Bullets, Brass, Ammo, Tech Tip No Comments »
November 22nd, 2022

Bullet Flight Video Reveals Shock Wave and Bullet Base Drag

Science Accuracy Academy bullet video Schlieren movie shock wave capture

Ever wondered what the air around a moving supersonic bullet really looks like? Check out this video from the Bryan Litz Ballistics Facebook page. This is a Schlieren video* of a 6mm 109gr Berger LRHT bullet at about 2800 fps as fired from Francis Colon’s PRS rifle at the Applied Ballistics Lab.


Bryan Litz notes: “You can clearly see the compression (shock) wave at the front of the bullet. A compression wave is formed when the air has to move faster than the speed of sound to get out of the way, which is certainly the case for this bullet which is moving about 2.5 times the speed of sound (Mach 2.5).

That shock wave is the ‘snap’ you hear when bullets fly past you if/when you’re downrange. Also, compressing the air into a shockwave takes energy, and that energy comes directly out of the forward velocity of your bullet and gets converted into heat and noise as the shock wave forms and dissipates.

The turbulent wake at the base of the bullet shows where/how base drag applies. The third and smallest component of drag for a supersonic bullet is skin friction drag, which is a viscous boundary layer effect, and is the least visible in this image. So as you head to the range or the hunting stand, think about the absolute violence your bullets are committing in the atmosphere, before they even reach the target!”

Subscribe to the Science of Accuracy Academy for more precision rifle and long range shooting content. LINK: TheScienceofAccuracy.com.

Science of Academy Contest
The Science of Accuracy Academy is currently running a contest for new subscribers. The winner receives a Vortex Fury HD 5000 Laser Rangefinder Binocular unit with Applied Ballistics functionality. Act soon — the deadline to enter is November 23, 2022 at 1:00 pm Eastern.

Science Accuracy Academy vortex rangefinder binoculars contest prize bryan litz


* Schlieren imaging makes air flow features visible. SEE Schlieren Photography Wikipedia page.

Permalink - Videos, Bullets, Brass, Ammo, Tech Tip No Comments »
July 27th, 2022

Modern Advancements in Long Range Shooting, Vol. III Available

Bryan Litz Applied ballistics Modern Advancements Long range shooting III Volume 3

The Science of Accuracy Academy is now accepting pre-orders for the newest book in the Modern Advancements series by Bryan Litz. The book, titled Modern Advancements in Long Range Shooting, Volume III can be pre-ordered now for $44.95. Pre-ordered books are expected to ship by early September.

The Modern Advancements series is an ongoing journal of the R&D activities at Applied Ballistics. Theories of ballistics are explored “myth-buster” style with extensive live fire testing. Employing state-of-the-art ballistic instrumentation including Doppler Radar and high-speed (Phantom) video, the Applied Ballistics team has made key insights about ballistics which are then shared through books and the Science of Accuracy Academy.

This 3rd Volume of the series has 13 Chapters. The book features four main parts: Part 1: Precision Testing, Part 2: Advanced Handloading, Part 3: Doppler Radar Testing, and Part 4: Miscellaneous.

Bryan Litz Applied ballistics Modern Advancements Long range shooting III Volume 3

Pre-orders for individuals and dealers opened July 26, 2022, and end when the books ship in late August or early September. During the pre-order phase, subscribers of The Science of Accuracy Academy will get a $20 off coupon for the new book. Other ballistics books by Bryan Litz are available through the Science of Accuracy Academy STORE.

Bryan Litz Applied ballistics Modern Advancements Long range shooting III Volume 3

About Applied Ballistics
Applied Ballistics’ mission is to be a complete, unbiased source of external ballistics information for long-range shooters. We’re highly active in R&D, constantly testing new claims, products, and ideas for potential merit and dispensing with the marketing hype which can make it so difficult for shooters to master the challenging discipline of long-range shooting.

We believe in the scientific method and promote mastery through an understanding of the fundamentals. Our work serves the shooting community via instructional materials which are easy to understand, and products such as ballistic software which runs on many platforms. If you’re a long-range shooter who’s eager to learn about the science of your craft, we’re here for you.

Permalink Bullets, Brass, Ammo, New Product, Tech Tip No Comments »