November 20th, 2015

Check Primer Pocket Diameter and Depth with Handy Tools

Primer depth diameter gauge brass cartridge

One side of this gauge is the “go” side which quickly tells you the depth of a primer pocket, whether any crimp is properly removed, and whether the primer pocket is loose. If it feels loose on the “go” side, use the other end of the tool, the “no go” side, to test to see if the primer pocket is too loose to hold a primer. If the no-go slides into the pocket, then you know to junk that brass.

Primer Pocket Growth and Useful Case Life
Repeated firings at stout pressures can cause primer pockets to grow in diameter. This can create an unsafe condition if your primers are not seating properly. Are your primer pockets “good to go”, or have they been pushed to the point of no return? Do you really know? Many guys try to gauge primer pocket tightness by “feel”, as they seat the primer. But that method isn’t precise. Now there’s a better way…

Primer depth diameter gauge brass cartridgeThe folks at have created a handy set of precision-machined gauges that let you quickly and accurately check your primer pockets. These gauges (aka “gages”) are offered in two sizes — for large and small primer pockets. A two-piece set of both large and small gauges costs just $19.99. These gauges let you quickly measure the depth of a primer pocket, and check if the crimp has been removed properly. Most importantly, the gauge tells you if the primer pocket has opened up too much. One side of the gauge has an enlarged diameter plug. If that “No-Go” side fits in the primer pocket, you should ditch the case — it’s toast.

CLICK HERE to order Small and Large Primer Pocket Swage Gage™ Set from

Precision ground from O-1 tool steel, The Ballistic Tools primer pocket gauges serve multiple functions. The inventor of these tools explains: “I created the prototype of this tool for my own use in brass processing. I needed a way to quickly and easily measure primer pockets that was reliable and did not require wasting a primer. This tool has been indispensable for me and I would never go back to the old method of uncertainty and guessing.”

Product tip from Boyd Allen. We welcome reader submissions.
Permalink New Product, Reloading 1 Comment »
November 16th, 2015

Reloading Tip for Coated Bullets — Adjust Loads Cautiously

Moly Danzac Bullet Coating Anti-friction HBN

Coating bullets with a friction-reducing compound such as Molybdenum Disulfide (Moly) offers potential benefits, including reduced barrel heat, and being able to shoot longer strings of fire between bore cleanings. One of the effects of reduced friction can be the lessening of internal barrel pressures. This, in turn, means that coated bullets may run slower than naked bullets (with charges held equal). To restore velocities, shooters running coated bullets are inclined to “bump up” the load — but you need to be cautious.

Be Careful When Increasing Loads for Coated Bullets
We caution shooters that when your start out with coated bullets in a “fresh barrel” you should NOT immediately raise the charge weight. It may take a couple dozen coated rounds before the anti-friction coating is distributed through the bore, and you really start to see the reduced pressures. Some guys will automatically add a grain or so to recommended “naked” bullet charge weights when they shoot coated bullets. That’s a risky undertaking.

Instead we recommend that you use “naked” bullet loads for the first dozen coated rounds through a new barrel. Use a chronograph and monitor velocities. It may take up to 30 rounds before you see a reduction in velocity of 30-50 fps that indicates that your anti-friction coating is fully effective.

We have a friend who was recently testing moly-coated 6mm bullets in a 6-6.5×47. Moly had not been used in the barrel before. Our friend had added a grain to his “naked” bullet load, thinking that would compensate for the predicted lower pressures. What he found instead was that his loads were WAY too hot initially. It took 30+ moly-coated rounds through the bore before he saw his velocities drop — a sign that the pressure had lowered due to the moly. For the rounds fired before that point his pressures were too high, and he ended up tossing some expensive Lapua brass into the trash because the primer pockets had expanded excessively.

LESSON: Start low, even with coated bullets. Don’t increase your charge weights (over naked bullet loads) until you have clear evidence of lower pressure and reduced velocity.

Procedure After Barrel Cleaning
If you shoot Moly, and clean the barrel aggressively after a match, you may want to shoot a dozen coated “foulers” before starting your record string. Robert Whitley, who has used Moly in some of his rifles, tells us he liked to have 10-15 coated rounds through the bore before commencing record fire. In a “squeaky-clean” bore, you won’t get the full “benefits” of moly immediately.

To learn more about the properties of dry lubricants for bullets, read our Guide to Coating Bullets. This covers the three most popular bullet coatings: Molybdenum Disulfide (Moly), Tungsten Disulfide (WS2 or ‘Danzac’), and Hexagonal Boron Nitride (HBN). The article discusses the pros and cons of the different bullet coatings and offers step-by-step, illustrated instructions on how to coat your bullets using a tumbler.

Permalink Bullets, Brass, Ammo, Reloading 2 Comments »
November 12th, 2015

Coming Soon: New IMR 4955 Enduron Powder

IMR 4955 powder Hodgdon burn rate chart propellant Enduron New

IMR just announced its latest Enduron powder, IMR 4955, which features a medium-slow burn rate similar to Hodgdon H4831 or IMR 4831. The IMR Enduron powders are clean-burning, temp stable, and feature a proprietary coating that helps reduce copper fouling. We are looking forward to trying IMR 4955 based on our positive experience with IMR 4166. We have used Enduron 4166 and have seen excellent accuracy in .308 Winchester and 6mm BR rifles.

IMR 4955 lands between IMR 4451 and IMR 7977 on the burn rate chart. Hodgdon, which distributes IMR powders, says that IMR 4955 works very well for cartridges such as 25-06 Remington, .270 Winchester, and the .300 Winchester Magnum. Perhaps this will prove a good choice for the .284 Win and .300 WSM as well (F-Open shooters take note). If you are currently using H4831 or H4831sc you should probably give IMR 4955 a try.

Hodgdon says IMR 4955 offers some important advantages:

1. IMR 4955 has a small kernel size. This allows the powder to flow through powder measures easily and meter very accurately.
3. IMR 4955 is very insensitive to temperature changes, so shooters should see uniform velocities across a broad temp range.
3. IMR 4955 has very good load density for medium and big game hunting cartridges (such as the .270 Win and .300 Win Mag).
4. Like other Enduron powders, IMR 4955 boasts a special additive that helps reduce copper fouling as the rifle is fired.

IMR 4955 H4831 burn rate hodgdonIMR 4955 Should Be Available Early Next Year
— Load Data is Online Now

IMR 4955 will be available in early 2016 in one-pound and eight-pound containers. With the addition of IMR 4955 to the series of Enduron powders, reloaders have a new, advanced-formulation powder that should work for a wide variety of popular cartridges — from the .260 Rem up to big magnums. Reloading data for IMR 4955 is now available online in the Hodgdon Reloading Data Center. Below is a sample of Hodgdon/IMR load data for IMR 4955 as used in the .300 Win Mag cartridge.

IMR 4955 powder Hodgdon burn rate chart propellant Enduron New

Permalink New Product, Reloading 1 Comment »
November 3rd, 2015

Tune and Tweak Your ChargeMaster for Better Performance

Do you own an RCBS electronic powder dispenser? If you do, take the time to watch this ChargeMaster Tuning video from 8541 Tactical. This nine-minute video demonstrates how to re-program your Chargemaster to “tune” the dispensing process. The video shows the exact programming procedures to follow, step-by-step. Some folks want a faster powder flow — others tune their machines for a more reliable drop (with fewer over-runs). One cheap and popular modification is to insert a 1″-long section of a McDonald’s straw in the ChargeMaster’s silver dispensing tube. This works surprisingly well to smooth kernel drop and prevent “clumping” that can cause an over-charge. The McDonald’s straw MOD is demonstrated in this video, starting at the 6:22 mark.

Large-Diameter Dispensing Tube Mod
Many folks have had success with the McDonald’s straw modification demonstrated in the above video. However, some folks would like to get even better flow performance (with virtually no clumping). Forum Member Frank B. has come up with a new option using a brass hose fitting with a large outside diameter. The hose fitting (with tape wrapped around the barbed nose section) is placed inside the RCBS dispensing tube (be sure to have some kind of wrap — you don’t want metal-on-metal). Here’s how the unit looks installed:

ChargeMaster tuning tweak brass fitting powder dispenser

Frank tells us: “I have found a cure for the over-throw problem. It is a simple 1/4″ barbed hose nipple. I wrapped a couple layers of tape around the barbed end for a snug fit. With this in place, I have thrown 100+ charges of Varget without a single overthrow. The ID of the barbed end needs to be approximately 3/16″ to feed a steady flow. This works because of the larger ID at the drop.”

Frank adds: “You can see in the photo that the powder is not stacking up. You can watch it drop one grain at a time. Hope this will take the aggravation out of your case charging.” For best performance with this brass fitting MOD, we recommend de-burring and smoothing out the front edge of the brass fitting over which the kernels drop.

Brass fitting mod suggested by Boyd Allen. We welcome reader submissions.
Permalink - Videos, Reloading 3 Comments »
November 1st, 2015

High-Quality Powder Funnels from 21st Century Shooting

21st Century Powder Funnel

21st Century Shooting produces a high quality powder funnel, that is very “user-friendly”. The top section is precision ground and polished for a smooth flow. The center has a see-through tube so you can watch the progress of your powder dropping into the case. At the bottom of each funnel is a black case adapter that seats securely yet won’t get stuck on the case. There are five different adapter sizes — the smallest fits .17 Rem to .223 Rem, while the largest fits big magnum calibers. We use the mid-sized, #3 adapter most often. This fits 6mmBR, 6.5×47 Lapua, and .308 Win family of cases (.243 Win, .260 Rem, 7mm-08, .308 Win). Additional adapters are $5.99 each. There are three tube lengths available: 3″, 6″, and 10″. So, if you need an extra-long drop tube (to help fill PPC and other small cases), 21st Century has you covered. field tested gearThe 21st Century funnels are priced by size. The 3″-long model is $29.99, the 6″-long model is $31.99, and the big 10″-long model is $34.99. Prices include one (1) adapter. These high-grade funnels will help you load faster and easier, with fewer spilled kernels. We use these funnels and they do work well. The appropriate collars fit your .223 Rem, 6PPC, 6mmBR, Dasher, 6XC, .260 Rem, .284 Win, and .308 case necks just right — not too loose, not too tight. Kernels flow smoothly through the tube without sticking to the sides. The aluminum top section does not seem to attract a static charge so you don’t have to waste time brushing kernels off the funnel after use. We like this product. For high-volume precision reloaders, these funnels are worth the money.

Permalink Gear Review, Reloading 1 Comment »
October 24th, 2015

UltimateReloader Video Demonstrates Pistol Case Gauges

Pistol Cartridge Gage Gauge

If you load pistol ammo you should have a case gauge (aka “gage”) for each cartridge type you reload. Caliber-specific, precision-machined cylindrical gauges perform many important functions. They will instantly reveal if your rounds are too long or have excessive headspace. They will also show if your case is bulged or otherwise too fat to chamber easily. You can use the gauge with sized brass as well as loaded rounds.

Case gauges are a “must-have” for anyone loading handgun ammunition, particularly if you crank out large quantities of pistol ammo with a progressive press. An oversize round can cause a misfeed, jam, or other problem. That can ruin your day if you are in the middle of a shooting match. If you are relying on your handgun for self-defense, the last thing you want is a malfunction of any kind. This Editor personally runs every pistol round through a gauge before it goes into the ammo box. Video Shows How to Use Pistol Case Gauges:

Our friend Gavin Gear of has prepared an excellent video that explains the benefits of pistol case gauges and shows how to use them. Gavin uses the quality gages produced by L.E. Wilson. These are available for the most popular handgun cartridges, both autoloader cartridges, and rimmed revolver cartridges. Gavin demonstrates gage use with .40 SW and .44 magnum cases.

READ Pistol Case Gage ‘How-To’ Guide on

Gavin states: “Using a case gage is very simple, and I would recommend that you add one of these gages to your reloader’s tool chest for each of the pistol cartridge types you reload. It may just save you a lot of time and hassle. Peace of mind is hard to put a price on!”

Ulimate also covers the use of case gauges for rifle cartridges. Rifle cartridge gauges are especially useful in detecting headspace problems. Case gauges can avert many problems, particularly if you reload milsurp rifle brass. CLICK HERE for Rifle Case Gauge “How To” and Video.

Permalink - Videos, Handguns, Reloading No Comments »
October 6th, 2015

Sinclair Full-Length Sizing Die Shims

Sinclair Die Shims

When your cases become hard to extract, or you feel a stiff bolt lift when removing a cartridge, it’s probably time to full-length size your cases, and “bump” the shoulder back. With a hunting load, shoulder bumping may only be required every 4-5 loading cycles. Short-range benchrest shooters, running higher pressures, typically full-length size every load cycle, bumping the shoulder .001-.002″. High Power shooters with gas guns generally full-length size every time, and may need to bump the shoulders .003″ or more to ensure reliable feeding and extraction.

Use Shims for Precise Control of Shoulder Bump
Some shooters like to set the “default” position for their full-length die to have an “ample” .003″ or .004″ shoulder bump. When they need less bump, a simple way to reduce the amount of shoulder movement is to use precision shims in .001″ (one-thousandth) increments.

Here are reports from Forum members who use the shims:

“Great product. I have my die lock ring(s) adjusted for the shortest headspace length on my multiple chambers 6BRs and 6PPCs. When needing a longer headspace, I just refer to my notes and add the appropriate shim under the lock ring. Keep it simple.” — F.D. Shuster

Mats Johansson writes: “I’ve been using [shims] since Skip Otto (of BR fame) came out with them. I set up my dies with the .006″ shim, giving me the option of bumping the shoulder a bit more when the brass gets old and hardens while still having room to adjust up for zero headspace, should I have missed the original setup by a thou or two. Hunting rounds can easily be bumped an extra .002-.003″ for positive, no-crush feeding. Being a safety-oriented cheapskate, I couldn’t live without them — they let me reload my cases a gazillion times without dangerous web-stretching. Shims are a must-have, as simple as that.” — Mats Johansson

Sinclair Die ShimsSinclair Int’l offers a seven-piece set of Sizing Die Shims that let you adjust the height of your die (and thereby the amount of bump and sizing) in precise .001″ increments. Sinclair explains: “Some handloaders will set their die up to achieve maximum sizing and then progressively use Sinclair Die Shims between the lock ring and the press head to move the die away from the shellholder. Doing this allows you to leave the lock ring in the same position. These shims are usually available in increments of .001″ and work very well.”

Seven Shims from .003″ to .010″
Sinclair’s $12.49 Die Shim Kit (item 22400) includes seven shims in thicknesses of .003, .004, .005, .006, .007, .008, and .010. For ease of use, shim thickness is indicated by the number of notches cut in the outer edge of each shim. Even without looking you can “count” the notches by feel.

Permalink Reloading 10 Comments »
September 27th, 2015

CUP vs. PSI — Do You Understand the Difference?

SAAMI CUP PSI Cartridge Copper Units Pressure PSI
Image by ModernArms, Creative Common License.

by Philip Mahin, Sierra Bullets Ballistic Technician
This article first appeared in the Sierra Bullets Blog

The ANSI / SAAMI group, short for “American National Standard Institute” and “Sporting Arms and Ammunition Manufacturers’ Institute”, have made available some time back the voluntary industry performance standards for pressure and velocity of centerfire rifle sporting ammunition for the use of commercial manufacturers. [These standards for] individual cartridges [include] the velocity on the basis of the nominal mean velocity from each, the maximum average pressure (MAP) for each, and cartridge and chamber drawings with dimensions included. The cartridge drawings can be seen by searching the internet and using the phrase ‘308 SAAMI’ will get you the .308 Winchester in PDF form. What I really wanted to discuss today was the differences between the two accepted methods of obtaining pressure listings. The Pounds per Square Inch (PSI) and the older Copper Units of Pressure (CUP) version can both be found in the PDF pamphlet.

SAAMI CUP PSI Cartridge Copper Units Pressure PSICUP Pressure Measurement
The CUP system uses a copper crush cylinder which is compressed by a piston fitted to a piston hole into the chamber of the test barrel. Pressure generated by the burning propellant causes the piston to move and compress the copper cylinder. This will give it a specific measurable size that can be compared to a set standard. At right is a photo of a case that was used in this method and you can see the ring left by the piston hole.

PSI Pressure Measurement
What the book lists as the preferred method is the PSI (pounds per square inch or, more accurately, pound-force per square inch) version using a piezoelectric transducer system with the transducer flush mounted in the chamber of the test barrel. Pressure developed by the burning propellant pushes on the transducer through the case wall causing it to deflect and make a measurable electric charge.

Q: Is there a standardized correlation or mathematical conversion ratio between CUP and PSI values?
Mahin: As far as I can tell (and anyone else can tell me) … there is no [standard conversion ratio or] correlation between them. An example of this is the .223 Remington cartridge that lists a MAP of 52,000 CUP / 55,000 PSI but a .308 Winchester lists a 52,000 CUP / 62,000 PSI and a 30-30 lists a 38,000 CUP / 42,000 PSI. It leaves me scratching my head also but it is what it is. The two different methods will show up in listed powder data[.]

So the question on most of your minds is what does my favorite pet load give for pressure? The truth is the only way to know for sure is to get the specialized equipment and test your own components but this is going to be way out of reach for the average shooter, myself included. The reality is that as long as you are using printed data and working up from a safe start load within it, you should be under the listed MAP and have no reason for concern. Being specific in your components and going to the load data representing the bullet from a specific cartridge will help get you safe accuracy. [With a .308 Winchester] if you are to use the 1% rule and work up [from a starting load] in 0.4 grain increments, you should be able to find an accuracy load that will suit your needs without seeing pressure signs doing it. This is a key to component longevity and is the same thing we advise [via our customer service lines] every day. Till next time, be safe and enjoy your shooting.

SAAMI CUP PSI Cartridge Copper Units Pressure PSI

Permalink Reloading, Tech Tip 1 Comment »
September 12th, 2015

Handloading Safety Tip — Bullet Bearing Surface and Pressure

Each Wednesday, the U.S. Army Marksmanship Unit publishes a reloading “how-to” article on the USAMU Facebook page. This week’s “Handloading Hump Day” post covers an important safety issue — why you should never assume that a stated “book” load for a particular bullet will be safe with an equal-weight bullet of different shape/design. The shape and bearing surface of the bullet will affect the pressure generated inside the barrel. Visit the USAMU Facebook page next Wednesday for the next installment.

Beginning Handloading, Part 13:
Extrapolating Beyond Your Data, or … “I Don’t Know, What I Don’t Know!”

Last week, we addressed several key facets of Service Rifle reloading. Today, we continue our Handloading Safety theme, focusing on not inadvertently exceeding the boundaries of known, safe data. Bullet manufacturers’ loading manuals often display three, four, or more similar-weight bullets grouped together with one set of load recipes. The manufacturer has tested these bullets and developed safe data for that group. However, seeing data in this format can tempt loaders — especially new ones — to think that ALL bullets of a given weight and caliber can interchangeably use the same load data. Actually, not so much.

The researchers ensure their data is safe with the bullet yielding the highest pressure. Thus, all others in that group should produce equal or less pressure, and they are safe using this data.

However, bullet designs include many variables such as different bearing surface lengths, hardness, and even slight variations in diameter. These can occasionally range up to 0.001” by design. Thus, choosing untested bullets of the same weight and caliber, and using them with data not developed for them can yield excess pressures.

This is only one of the countless reasons not to begin at or very near the highest pressure loads during load development. Always begin at the starting load and look for pressure signs as one increases powder charges.

Bullet bearing surface length (BSL) is often overlooked when considering maximum safe powder charges and pressures. In photo 1 (below), note the differences in the bullets’ appearance. All three are 7mm, and their maximum weight difference is just five grains. Yet, the traditional round nose, flat base design on the left appears to have much more BSL than the sleeker match bullets. All things being equal, based on appearance, the RN/FB bullet seems likely to reach maximum pressure with significantly less powder than the other two designs.

Photo 1: Three Near-Equal-Weight 7mm Bullets with Different Shapes
USAMU Bullet Ogive Comparision Safety Reloading

Due to time constraints, the writer used an approximate, direct measurement approach to assess the bullets’ different BSLs. While fairly repeatable, the results were far from ballistics engineer-grade. Still, they are adequate for this example.

Bullet 1 (L-R), the RN/FB, has a very slight taper and only reaches its full diameter (0.284”) very near the cannelure. This taper is often seen on similar bullets — it helps reduce pressures with good accuracy. The calculated BSL of Bullet 1 was ~0.324”. The BSL of Bullet 2, in the center, was ~0.430”, and Bullet 3’s was ~ 0.463”. Obviously, bullets can be visually deceiving as to BSL!

Some might be tempted to use a bullet ogive comparator (or two) to measure bullets’ true BSL for comparison’s sake. Unfortunately, comparators don’t typically measure maximum bullet diameter and this approach can be deceiving.

Photo 2: The Perils of Measuring Bearing Surface Length with Comparators
USAMU Bullet Ogive Comparision Safety Reloading

In Photo 2, two 7mm comparators have been installed on a dial caliper in an attempt to measure BSL. Using this approach, the BSLs differed sharply from the original [measurements]. The comparator-measured Bullet 1 BSL was 0.694” vs. 0.324” (original), Bullet 2 was 0.601” (comparator) vs. 0.430” (original), and Bullet 3 (shown in Photo 2) was 0.602” (comparator) vs. 0.463” (original). [Editor’s comment — Note the very large difference for Bullet 1, masking the fact that the true full diameter on this bullet starts very far back.]

Please join us again next week as we examine other lesser-discussed variables that affect pressure and velocity during handload development. In the meantime, stay safe, and favor center!

Permalink - Articles, Reloading 3 Comments »
September 5th, 2015

Tools and Techniques for Measuring Cartridge Brass

Measuring Cartridge Brass

German Salazar has written a very thorough guide to measuring nearly all the critical dimensions of cartridge brass. In his Measuring the Case article, on his Rifleman’s Journal website, German reviews the tools and techniques required to measure everything from case overall length to case neck concentricity. Step-by-step, German shows how to measure: Case Length, Case Body length (below neck), Neck Diameter, Headspace, Base Diameter, Neck Thickness, and Case Neck Concentricity.

Measuring Cartridge Brass

If you are an “advanced reloader” or want to be, you should read German’s article. Not only does German explain the most common measuring procedures, he highlights some alternative methods you might not have tried yet. The article also links to related discussions of more complex measurement tasts, such as determining case body wall thickness variation.

Even if you’re not a competitive shooter, measuring your brass can provide important safety benefits. As German explains in the conclusion of his article: “There are obviously a lot of measurements that can be taken on the cartridge case and in some cases, more than one way to take them. However, the first two that any new reloader must learn are case length and neck clearance, these two are safety concerns and if overlooked can results in serious damage to the rifle and injury to you.”

German’s article first appeared in in 2010.
Permalink Reloading, Tech Tip No Comments »
September 2nd, 2015

How to Improve Case Concentricity with Standard Seating Dies

USAMU Handloading Hump Day Seating Die Adjustment Stem TIR Concentricity Run-out

Each Wednesday, the U.S. Army Marksmanship Unit publishes a reloading “how-to” article on the USAMU Facebook page. This USAMU “Handloading Hump Day” article, the second in a series on improving concentricity, has many useful tips. If you use standard (non-micrometer) seating dies when loading some cartridge types, this article is worth reading. And visit the USAMU Facebook page next Wednesday for the next installment.

Once again, it’s time for USAMU’s “Handloading Hump-Day!” Last week, we addressed achieving very good loaded-cartridge concentricity (AKA “TIR”, or Total Indicator Runout) using standard, “hunting grade” reloading dies.

We explained how to set up the Full-Length Size die to float slightly when correctly adjusted for desired case headspace. We also cited a study in which this method loaded ammunition straighter than a set of [higher grade] match dies from the same maker. [One of the keys to reducing TIR with both sets of dies was using a rubber O-ring below the locking ring to allow the die to float slightly. READ Full-Length Sizing Die TIP HERE.]

Now, we’ll set up a standard seating die to minimize TIR — the other half of the two-die equation. As before, we’ll use a single-stage press since most new handloaders will have one. A high-quality runout gauge is essential for obtaining consistent, accurate results.

Having sized, primed and charged our brass, the next step is bullet seating. Many approaches are possible; one that works well follows. When setting up a standard seating die, insert a sized, trimmed case into the shell-holder and fully raise the press ram. Next, back the seating stem out and screw the die down until the internal crimping shoulder touches the case mouth.

Back the die out one-quarter turn from this setting to prevent cartridge crimping. Next, lower the press ram and remove the case. Place a piece of flat steel on the shellholder and carefully raise the ram. Place tension on the die bottom with the flat steel on the shellholder. This helps center the die in the press threads. Check this by gently moving the die until it is well-centered. Keeping light tension on the die via the press ram, secure the die lock ring.

USAMU Handloading Hump Day Seating Die Adjustment Stem TIR Concentricity Run-out

If one were using a micrometer-type seating die, the next step would be simple: run a charged case with bullet on top into the die and screw the seating stem down to obtain correct cartridge OAL.

However, with standard dies, an additional step can be helpful. When the die has a loosely-threaded seating stem, set the correct seating depth but don’t tighten the stem’s lock nut. Leave a loaded cartridge fully raised into the die to center the seating stem. Then, secure the stem’s lock nut. Next, load sample cartridges and check them to verify good concentricity.

One can also experiment with variations such as letting the seating stem float slightly in the die to self-center, while keeping correct OAL. The runout gauge will show any effects of changes upon concentricity. However, the first method has produced excellent, practical results as evidenced by the experiment cited previously. These results (TIR Study 2) will reproduced below for the reader’s convenience.

TIR Study 2: Standard vs. Match Seating Dies

50 rds of .308 Match Ammo loaded using carefully-adjusted standard dies, vs. 50 using expensive “Match” dies from the same maker.

Standard dies, TIR:
0.000” — 0.001” = 52%;
0.001”– 0.002” = 40%;
0.002”– 0.003” = 8%. None greater than 0.003”.

“Match” dies, TIR:
0.000”– 0.001” = 46%;
0.001” — 0.002” = 30%;
0.002” — 0.003” = 20%;
0.003” — 0.004” = 4%.

AccurateShooter Comment: This shows that, with careful adjustment, the cheaper, standard dies achieved results that were as good (or better) than the more expensive “Match” Dies.

These tips are intended to help shooters obtain the best results from inexpensive, standard loading dies. Especially when using cases previously fired in a concentric chamber, as was done above, top-quality match dies and brass can easily yield ammo with virtually *no* runout, given careful handloading.

Permalink Reloading, Tech Tip 3 Comments »
August 21st, 2015

Case Diagnostics — How to Spot Problems with Cartridge Brass

Case Diagnostics 101 Sierra Bullets .223 Rem 5.56 brass cartridge safety

Ever wondered what caused a particular bulge or marking on a case? And more importantly, does the issue make the case unsafe for further use? Sierra Bullets Ballistic Technician Duane Siercks offers some insight into various issues and their causes in this article from the Sierra Blog.

Diagnosing Problems with Cartridge Brass

by Duane Siercks, Sierra Bullets
I was handed a small sample of .223 Rem cases the other day and was asked if I could comment on some marks and appearances that had been noticed as they were sorting through the cases. I will share what was observed and give you what would seem to be a cause for them. These were from an unknown source, so I have no way of knowing what type of firearm they were fired in or if they were factory loaded or reloaded ammunition.

Example ONE: Lake City 5.56, Unknown Year
Case #1 was seen to have a very rounded shoulder and split. Upon first look it was obvious that this round had been a victim of excess pressure. The firearm (perhaps an AR?) was apparently not in full battery, or there was possibly a headspace issue also. While taking a closer look, the primer was very flat and the outside radius of the primer cup had been lost. High pressure! Then I also noticed that there was an ejector mark on the case rim. This is most certainly an incident of excessive pressure. This case is ruined and should be discarded. See photo below.

Case Diagnostics 101 Sierra Bullets .223 Rem 5.56 brass cartridge safety

Example TWO: Lake City Match 1993
Case #2 appears very normal. There was some question about marks seen on the primer. The primer is not overly flattened and is typical for a safe maximum load. There is a small amount of cratering seen here. This can be caused by a couple of situations.

Case Diagnostics 101 Sierra Bullets .223 Rem 5.56 brass cartridge safety

Cratering is often referred to as a sign of excess pressure. With safety in mind, this is probably something that should make one stop and really assess the situation. Being as there are no other signs of pressure seen with this case, I doubt that pressure was unsafe. That leads us to the next possibility. This can also be caused by the firing-pin hole in the bolt-face being a bit larger than the firing-pin, and allowing the primer to flow back into the firing-pin hole causing the crater seen here. This can happen even with less-than-max pressures, in fact it has been noted even at starting loads. Always question whether pressure is involved when you see a crater. In this situation, I lean toward a large firing-pin hole. This case should be safe to reload.

Example THREE: R-P .223 Remington
Case #3 appears normal with one exception. There are two rings seen about one half inch below the base of the shoulder. These rings are around the circumference of the case, one being quite pronounced, and the other being noticeably less.

Case Diagnostics 101 Sierra Bullets .223 Rem 5.56 brass cartridge safety

As we do not know the origin of the firearm in which this case was fired, it does seem apparent that the chamber of the firearm possibly had a slight defect. It could have been that the reamer was damaged during the cutting of this chamber. I would suggest that the chamber did have a couple of grooves that imprinted onto the case upon firing. This firearm, while maybe not dangerous should be looked at by a competent gunsmith. In all likelihood, this case is still safe to use.

Example FOUR: R-P .223 Remington
Case #4 has no signs of excess pressure. There is a bulge in the case just ahead of the case head that some might be alarmed by. This bulge is more than likely caused by this case being fired in a firearm that had a chamber on the maximum side of S.A.A.M.I. specifications. There is actually no real issue with the case. Note that the primer would indicate this load was relatively mild on pressure.

Case Diagnostics 101 Sierra Bullets .223 Rem 5.56 brass cartridge safety

If this case was reloaded and used in the same firearm numerous times there might be a concern about case head separation. If you were going to use this case to load in an AR, be sure to completely full-length re-size to avoid chambering difficulties. This case would be safe to reload.

CLICK HERE for MORE .223 Rem Case Examples in Sierra Blog

It is very important to observe and inspect your cases before each reloading. After awhile it becomes second nature to notice the little things. Never get complacent as you become more familiar with the reloading process. If ever in doubt, call Sierra’s Techs at 1-800-223-8799.

Sierra Bullets Case Diagnostics Blog

Permalink Bullets, Brass, Ammo, Reloading No Comments »
August 10th, 2015

Measuring Shoulder "Bump" with Harrell’s Case Collar

Harrell’s Precision sells “semi-custom” full-length bushing dies for the PPC and 6BR chamberings. While the Harrell brothers do not cut the die to spec, they carry a large selection of dies made with slightly different internal dimensions. When you send in your fired brass, the Harrells choose a die from inventory with just the right amount of sizing (diameter reduction) at the top and bottom of the case. Given the quality, and precise fit, Harrell’s full-length dies are a good value at $70.00 plus shipping.

Bump Measuring Collar
The Harrell brothers provide a nice bonus item with each full-length die — a neat, little shoulder bump measuring device as shown in the photo at right. Hornady/Stoney Point sells a stand-alone tool that does the same job, but the Harrell’s bump collar is simpler and faster. To measure your shoulder bump, simply place the Harrell’s bump collar over the front of your deprimed case (before sizing) and measure the OAL with your calipers. Then size the case in your full-length die, replace the collar and repeat the measurement. You want to set your die so the shoulder moves back about .001″ to .0015″ for most applications. (With semi-auto guns you may want more bump.)

Permalink Gear Review, Reloading 3 Comments »
July 7th, 2015

USAMU Advice for Progressive Press Users USAMU progressive press reloading

Each Wednesday, the U.S. Army Marksmanship Unit (USAMU) publishes a reloading “how-to” article on the USAMU Facebook page. In this article, the USAMU’s reloading gurus address a question frequently asked by prospective handloaders: “Should I buy a single-stage press, or a progressive?” The USAMU says the best answer is Solomon-esque in both its wisdom and simplicity: “Get BOTH!” However, there is definitely more to the issue, as the USAMU explains below.

USAMU Reloading

Progressive Press Safety Considerations by USAMU Staff
Many are the beginning handloaders who have asked a friend about their “setting up” a progressive press for them. The idea is that the newbie could then just feed in components and crank out buckets of practice ammo without needing to really learn much about handloading. Tempting though this might be, that’s simply not how it works. Such an approach might be ok if there were never a malfunction with either press or operator, but that’s unrealistic. Our hypothetical newbie would then lack the knowledge to problem-solve most situations.


Permalink Reloading 1 Comment »
July 2nd, 2015

Use Stub Gauge to Check Shoulder ‘Bump’ and Seating Depth

AccurateShooter stub gauge barrel chamber headspace reloading

Forum member Rich DeSimone uses a handy “Stub Gauge” for setting shoulder “bump” and seating depth. The gauge is made from a section of barrel lopped off when the muzzle is crowned. The chambering reamer is run in about 1/4 of the way, enough to capture the neck and shoulder area of the case. Rich then uses his full-length die to “bump” a master case with the ideal amount of headspace for easy feeding and extraction. He takes that case and sets it in this Stub Gauge, and measures from the front of the gauge to the rim. He can then quickly compare any fired case to a his “master” case with optimal headspace. Since the gauge measures off the shoulder datum, this tells him how much to bump his fired brass.

In addition, the Stub Gauge can be used to set bullet seating-depth. Rich has a channel cut transversely on one side of the gauge, exposing the throat area. Since the interior of the gauge is identical to the chamber in his gun, this lets him see where a seated bullet engages the rifling. He can tinker with bullet seating length until he gets just the right amount of land contact on the bullet, confirmed visually. Then he measures the case OAL and sets his seating dies accordingly. This is much handier than using a Stoney Point Tool to measure distance to the lands. As your barrel’s throat wears, you may seat your bullets out further to “chase the lands”, but the gauge provides a constant land engagement point, in the barrel’s “as new” condition. By measuring the difference between the land contact point on the gauge and the actual contact point on your barrel, you can determine throat “migration”.

Permalink Reloading, Tech Tip 1 Comment »
June 26th, 2015

Case Prep Tips from Western Powders

Western Powders Case Preparation prep inspection flash holes primer pockets reloading

Western Powders (which sells Accurate, Ramshot, and Norma powders) has published an article on case inspection and preparation. There are many tips in this article that can be useful to precision hand-loaders. For example, every time you open a new box of cartridge brass (particularly from domestic makers), you should inspect each case for flaws.

TIP ONE: Visual Inspection — Finding Flaws
Cases are mass-produced items and malformed ones are relatively common. Inspect each case carefully looking for obvious defects. A bench-mounted magnifying glass with light is a real help for the over-40 crowd. The main defects will be cracks in the neck or case body, crushed shoulders or deep creases in the neck. Next check the primer pocket. It is also fairly common to find flash holes that are damaged or, more rarely, not concentric to the primer pocket.

Western Powders Case Preparation prep inspection flash holes primer pockets reloading

Imperfections like small dings in the case body, or necks that are not completely symmetrical do not have to be eliminated at this step. Damage of this sort is usually from loose packaging and usually has not seriously damaged the brass. [Running an expander mandrel in the neck] and fire-forming will iron out these largely cosmetic issues.


Permalink Bullets, Brass, Ammo, Reloading No Comments »
June 22nd, 2015

New 6.5×47 Lapua Cartridge Guide from

6.5x47 Lapua Cartridge Guide 6.5 Guys has released the most complete discussion of the 6.5×47 Lapua cartridge ever published. Our new 6.5×47 Cartridge Guide is packed with information. If you own a 6.5×47 rifle, or are thinking of building a rifle with this chambering, definitely read this Cartridge Guide from start to finish. Our comprehensive, 5000-word article was researched and written by the 6.5 Guys, Ed Mobley and Steve Lawrence. Both Ed and Steve shoot the 6.5×47 Lapua in competition and they are experts on this accurate and efficient mid-sized cartridge.

CLICK HERE to READ NEW 6.5×47 Lapua Cartridge Guide

You’ll find everything you need to know about the 6.5×47 Lapua in our new Cartridge Guide. We cover ballistics, reloading, die selection, and we provide an extensive list of recommended loads, for bullets from 120 to 140 grains. You can read interviews with respected experts who’ve built and tested many 6.5×47 rifles. The Guide includes helpful tech tips such as how to maximize the powder fill in your cases. This Cartridge Guide can put you on the “fast track” — helping you develop accurate, reliable loads with minimal development time.

6.5x47 Lapua Cartridge guide6.5×47 Lapua Cartridge Guide Highlights:

  • Cartridge Specifications
  • Comprehensive Load Data
  • Best Bullets and Primers for 6.5×47
  • Ballistics Comparison Charts
  • Sizing and Seating Die Options
  • 6mm-6.5×47 (Necked-Down) Options
  • Ask the Experts Section
  • Tips for Accurate Reloading
  • Brass Life and Annealing
  • Chambering and Gunsmithing Tips
  • 6.5×47 Lapua for Hunting
  • 6.5×47 Lapua for Tactical Competition
  • 6.5×47 Factory-Loaded Ammo

6.5x47 Lapua Cartridge Guide 6.5 Guys
Here is a sample from the 6.5×47 Cartridge Guide’s Ask the Experts Section. This is an interview with Rich Emmons, one of the founders of the Precision Rifle Series:

6.5x47 Lapua Cartridge Guide 6.5 Guys

6.5x47 Lapua Cartridge guide

Permalink - Articles, Bullets, Brass, Ammo, Gear Review 11 Comments »
June 11th, 2015

Precision Handloading for Pistols — Tips from the USAMU

USAMU Service Pistol Handgun Tip Advice Reloading

This week, the U.S. Army Marksmanship Unit is pleased to host pistol teams from the various U.S. Armed Services in the 56th Annual Interservice Pistol Championship. Our Handloading Shop members have enjoyed discussing pistol accuracy and enjoying the camaraderie of competitive shooters from all over. In that spirit, this week’s topic will focus on handloading for best pistol accuracy, rather than our usual rifle-oriented information.

Optimize the Taper Crimp
One often-overlooked aspect of handloading highly-accurate pistol ammunition is the amount of crimp and its effect on accuracy. Different amounts of taper crimp are used with various handloads to obtain best accuracy. The amount is based on bullet weight, powder burn rate and charge, plus other factors. It is not unusual for our Shop to vary a load’s crimp in degrees of 0.001″ and re-test for finest accuracy.


Permalink Handguns, Reloading No Comments »
May 29th, 2015

Bullet Concentricity and Related Issues

Sinclair concentricity 101 eccentricity run-out reloading plans

Sinclair International reloading toolsSinclair International has released an interesting article about Case Concentricity* and bullet “run-out”. This instructional article by Bob Kohl explains the reasons brass can exhibit poor concentricity, and why high bullet run-out can be detrimental to accuracy.

Concentricity, Bullet Alignment, and Accuracy by Bob Kohl
The purpose of loading your own ammo is to minimize all the variables that can affect accuracy and can be controlled with proper and conscientious handloading. Concentricity and bullet run-out are important when you’re loading for accuracy. Ideally, it’s important to strive to make each round the same as the one before it and the one after it. It’s a simple issue of uniformity.


Permalink - Articles, Reloading 3 Comments »
May 17th, 2015

Check Your Crown’s Condition with a Q-Tip

The last half-inch or so of your barrel is absolutely critical. Any damage (or abnormal wear) near the crown will cause a significant drop-off in accuracy. Here are ways you can check the end of your barrel, using a common Q-Tip.

Use Q-Tip for Barrel Inspection
To find out if you have a burr or damage to your crown, you can use an ordinary Q-tip cotton swab. Check the edges of the crown by pulling the Q-tip gently out past the edge of the crown. If you have a burr, it will “grab” the cotton and leave strands behind.

Larry Willis has another way to use a Q-Tip: “Here’s a neat trick that will surprise you with how well it works.” Just insert a Q-Tip into your barrel (like the picture below), and it will reflect enough light so that you can get a real good look at the last half inch of rifling and the crown of your barrel. In most cases you’ll find that this works much better than a flashlight. Larry tells us: “I’ve used this method about a jillion times. Q-Tips are handy to keep in your cleaning supplies anyway. This is a good way to judge approximately how well you are cleaning your barrel when you’re at the range. It’s also the best way to examine your barrel when you’re in the field.”

Larry Willis is the inventor of Innovative Technologies’ Belted Magnum Collet Resizing Die. Larry explains how this die works, and offers other reloading tips on

Permalink Tech Tip 4 Comments »