Bryan Litz with his F-TR Nat’l Championship-winnning rifle, and the man who built it, John Pierce.
Bryan Litz knows something about bullet shapes and dimensions. He’s the chief designer of many of Berger’s projectiles, including the successful line of Hybrid bullets. Bryan also understands how bullets actually perform in “real world” competition. Bryan won BOTH the Mid-Range and Long-Range National F-TR Championships this year, a remarkable accomplishment. With Bryan’s technical expertise combined with his shooting skills, few people are better qualified to answer the question: “how should I sort bullets when loading for competition?”
Bullet Sorting Strategies — OAL vs. Base to Ogive
At the 2015 Berger Southwest Nationals, Forum member Erik Cortina cornered Bryan Litz of Applied Ballistics. Erik was curious about bullet sorting. Knowing that bullets can be sorted by many different criteria (e.g. weight, overall length, base to ogive length, actual bearing surface length etc.) Erik asked Bryan to specify the most important dimension to consider when sorting. Bryan recommended sorting by “Base to Ogive”. Litz noted that: “Sorting by overall length can be misleading because of the nature of the open-tip match bullet. You might get a bullet that measures longer because it has a jagged [tip], but that bullet might not fly any different. But measuring base to ogive might indicate that the bullet is formed differently — basically it’s a higher resolution measurement….”
Ballistics Q & A in Shooter’s Forum
Got more questions about bullets? Our Shooters’ Forum has a special area for Bullets & Ballistics topics. There you can get your own questions about bullets and ballistics answered by Bryan Litz and other experts from Applied Ballistics.
Here’s a valuable web resource our readers should bookmark for easy access in the future. ShootForum.com offers a vast Bullet Database, which includes roughly 3900 bullet designs in all. We counted nearly 200 different 6mm bullets! The bullet info comes from the makers of QuickLOAD Software. Access to the online database is FREE. Most database entries include Caliber, Manufacturer, Stated Bullet Weight, True Bullet Weight, Length, Sectional Density (SD), and Ballistic Coefficient.* In many cases multiple BCs are provided for different velocity ranges.
The database is great if you’re looking for an unusual caliber, or you want a non-standard bullet diameter to fit a barrel that is tighter or looser than spec. You’ll find the popular jacketed bullets from major makers, plus solids, plated bullets, and even cast bullets. For those who don’t already own QuickLOAD software, this is a great resource, providing access to a wealth of bullet information.
Values for Changed Bullet Designs
Some of our readers have noted some variances with BCs and OALs with recently changed bullet designs. In general the database is very useful and accurate. However, as with any data resource this extensive, there will be a few items that need to be updated. Manufacturers can and do modify bullet shapes. Kevin Adams, one of the creators of the database, explains: “Thanks for mentioning this database. It took us a long time to collate this information and have agreement to publish it. Please keep in mind that individual batches of bullets will differ from the manufacturers’ stated standards. This is more a reflection on the manufacturers’ tolerances than the database ‘accuracy’. We will continue to add to the database as more manufacturers’ figures come available.”
That smart phone in your pocket is really a miniature computer. What if you could harness that electronic brain to work as a weather meter? You’d just need a way to feed the smart phone environmental data — temperature, humidity, air pressure, wind velocity and so on. Well now that’s possible with the new $69.00 Weatherflow Smart Phone Weather Meter.
This portable, multi-function Weather Meter provides key weather data to your iOS and Android Mobile devices wirelessly via BlueTooth. The unit measures temperature, humidity, air pressure and dew points. With its built-in impeller, the Weather Meter will also record wind speed (average and gust), and wind direction. You can hand-hold it or attach it to a pole/tripod with a standard camera mount. This wireless Weather Meter is compatible with iPhone, iPad, iPod Touch and all major Android devices. The best thing is the price — right now the unit is just $69.00 at Amazon.com.
Reviews by Weather Meter Purchasers
By Wiley on October 2, 2015 — Verified Purchase
I own and love the original WeatherFlow Wind Meter but when I saw this new one that includes temperature, humidity and pressure for under $100, I had to have it. My new weather meter arrived two days after I ordered it and I am amazed at how good this thing is. Solid and well-built, it’s super comfortable in your hand. The hard carry case is nice. The App is pretty simple – start the App and push the button to connect. The meter connected without issue to my iPad mini and my Galaxy S5 (Android) phone. It displays the extra sensor information elegantly, and the data agrees very well with the Davis weather station on my neighbor’s house. Saving and sharing reports is simple. Something cool that’s not obvious until you play with the App a bit are the ‘more data’ you can see (wind chill, heat index, crosswind, headwind, and many others including some I didn’t know existed). I’ve used various Kestrel meters over years and while they are good sensors, Kestrel’s higher price and lack of smart phone integration (or any easy way to get data off the thing) have been frustrating. [Editor: Kestrel’s brand new 5000 Series Weather Meters do offer Bluetooth connectivity as an optional extra.]
By Richard W. on October 27, 2015 — Verified Purchaser
Great device for the price. It would be nice to interface it with ballistics Apps… but it provides relatively accurate readings and is very small. Finding wind direction is a bit manual (you have to face the device into the wind), but how hard is that? The Bluetooth connectivity is great, you don’t actually have to have it physically connected to the phone — you can put it where you need it.
Technical Details — Compatibility and Settings
The WeatherFlow Weather Meter processes data via a free downloadable App for iOS or Android. The unit works with Apple iPhones 4S or newer, Apple iPads Gen 3 or newer, iPod Touch, and “all major Android devices”. Wireless functionality requires support for Bluetooth version 4.0. You can select either English or Metric units via the “settings” menu. Wind speed units/range are 0.5 to 140 mph; 0.4 to 122 Knots; 0.8 to 225 kph; 0.2 to 63 m/s. Pressure units/range are: 8.9 to 32.5 inHg; 300 to 1100 mbar.
Product Tip from Boyd Allen. We welcome reader submissions.
Applied Ballistics LLC will offer its first-ever Ballistics Seminar early next year in Tustin, Michigan. This two-day seminar will feature Ballistician Bryan Litz and other experts including Eric Stecker, President of Berger Bullets, and Ray Gross, Captain of the U.S. F-TR Rifle Team. Bryan, the primary speaker, will present material from his books, the Applied Ballistics Lab, and his experience shooting in various disciplines. Bryan recently won both the Mid-Range and Long-Range F-TR National Championships. Bryan will be assisted by Nick Vitalbo, Owner of nVisti Tactical Innovations and lead engineer for Applied Ballistics. The seminar, held February 29 through March 1, 2016, will include classroom sessions followed by live fire demonstrations with sophisticated instrumentation.
Ballistic Solvers – How they work, best practices, demos.
Weapon Employment Zone (WEZ) Analysis – How to determine and improve hit percentage.
Optics and Laser Technology — State of the Art.
The seminar costs $500.00. But consider this — each seminar participant will receive the entire library of Applied Ballistics books and DVDs, valued at $234.75, PLUS a free copy of Applied Ballistics Analytics software, valued at $200.00. So you will be getting nearly $435.00 worth of books, DVDs, and software. In addition, a DVD of the seminar will be mailed to each attendee after the seminar concludes.
Bryan Litz explains: “Subjects will be introduced from an academic-first, principles perspective. Once the scientific basis for the material is established, the ideas are further demonstrated with examples from instrumented live fire. We explain the science, and then present examples of the principles in action. You’ll leave with an understanding of the subject matter, as well as a knowledge of how to apply it in the real world.” To learn more about the Ballistics Seminar, read this AccurateShooter Forum Thread.
Early Bird Special — Save $100.00
If you register before the end of December, 2015, you’ll receive $100.00 off the regular $500 registration fee. This $400.00 Early Bird Special price can be secured by registering through the Applied Ballistics online store.
The two-day seminar will be held at the Kettunen Center in Tustin Michigan. Lodging costs range from $115-$240 (all-inclusive). This price includes three meals each day, and starts at 3:00 pm the day before the seminar, and goes to breakfast the morning after the seminar concludes. Contact the Kettunen Center directly to reserve accommodations.
Have you recently purchased a new scope? Then you should verify the actual click value of the turrets before you use the optic in competition (or on a long-range hunt). While a scope may have listed click values of 1/4-MOA, 1/8-MOA or 0.1 Mils, the reality may be slightly different. Many scopes have actual click values that are slightly higher or lower than the value claimed by the manufacturer. The small variance adds up when you click through a wide range of elevation.
In this video, Bryan Litz of Applied Ballistics shows how to verify your true click values using a “Tall Target Test”. The idea is to start at the bottom end of a vertical line, and then click up 30 MOA or so. Multiply the number of clicked MOA by 1.047 to get the claimed value in inches. For example, at 100 yards, 30 MOA is exactly 31.41 inches. Then measure the difference in your actual point of impact. If, for example, your point of impact is 33 inches, then you are getting more than the stated MOA with each click (assuming the target is positioned at exactly 100 yards).
How to Perform the Tall Target Test
The objective of the tall target test is to insure that your scope is giving you the proper amount of adjustment. For example, when you dial 30 MOA, are you really getting 30 MOA, or are you getting 28.5 or 31.2 MOA? The only way to be sure is to verify, don’t take it for granted! Knowing your scopes true click values insures that you can accurately apply a ballistic solution. In fact, many perceived inaccuracies of long range ballistics solutions are actually caused by the scopes not applying the intended adjustment. In order to verify your scope’s true movement and calculate a correction factor, follow the steps in the Tall Target Worksheet. This worksheet takes you thru the ‘calibration process’ including measuring true range to target and actual POI shift for a given scope adjustment. The goal is to calculate a correction factor that you can apply to a ballistic solution which accounts for the tracking error of your scope. For example, if you find your scope moves 7% more than it should, then you have to apply 7% less than the ballistic solution calls for to hit your target.
NOTE: When doing this test, don’t go for the maximum possible elevation. You don’t want to max out the elevation knob, running it to the top stop. Bryan Litz explains: “It’s good to avoid the extremes of adjustment when doing the tall target test.I don’t know how much different the clicks would be at the edges, but they’re not the same.”
Should You Perform a WIDE Target Test Too?
What about testing your windage clicks the same way, with a WIDE target test? Bryan Litz says that’s not really necessary: “The wide target test isn’t as important for a couple reasons. First, you typically don’t dial nearly as much wind as you do elevation. Second, your dialed windage is a guess to begin with; a moving average that’s different for every shot. Whereas you stand to gain a lot by nailing vertical down to the click, the same is not true of windage. If there’s a 5% error in your scope’s windage tracking, you’d never know it.”
Verifying Scope Level With Tall Target Test
Bryan says: “While setting up your Tall Target Test, you should also verify that your scope level is mounted and aligned properly. This is critical to insuring that you’ll have a long range horizontal zero when you dial on a bunch of elevation for long range shots. This is a requirement for all kinds of long range shooting. Without a properly-mounted scope level (verified on a Tall Target), you really can’t guarantee your horizontal zero at long range.”
NOTE: For ‘known-distance’ competition, this is the only mandatory part of the tall target test, since slight variations in elevation click-values are not that important once you’re centered “on target” at a known distance.
Applied Ballistics LLC will release updated editions of two popular resource books: Applied Ballistics for Long-Range Shooting (3rd Edition) and Ballistic Performance of Rifle Bullets (2nd Edition). Retail price is $54.95 for each title, or $94.95 if purchased together. Pre-orders are now being accepted with a $5 discount per book. You can pre-order the new editions through the Applied Ballistics store. The new editions are expected to ship by the second week of December.
Applied Ballistics for Long Range Shooting (ABLRS), Bryan Litz’s “Magnum Opus”, will have significant enhancements. New for the Third Edition is content on Weapon Employment Zone (WEZ) analysis. WEZ analysis is the study of hit percentage, and how that will be affected by the uncertainties in your environment. Existing academic material is augmented with modern experimental findings. The Third Edition also includes a CD-ROM disc with Applied Ballistics’ latest version of its ballistic software. NOTE: The third edition of ABLRS does NOT include the library of bullet data. That bullet library now exists as a separate reference book: Ballistic Performance of Rifle Bullets.
Ballistic Performance of Rifle Bullets — Data for 533 Bullets AND Rimfire Ammo
The updated, Second Edition of Ballistic Performance of Rifle Bullets contains the current library of all modern bullets tested by the Applied Ballistics Laboratory. Expanding on the First Edition, which had data on 400 bullets from .22 to .408 caliber, this Second Edition contains data on 533 bullets from .22 through .50 caliber. In addition to the centerfire bullet data, the Second Edition contains live fire data on 90 types of rimfire ammo which were all tested for muzzle velocity and BC through five different barrels of various twist/length configurations. This library of experimental test data is the most extensive and accurate resource ever assembled for small arms bullets. Numerous modern ballistics programs draw from the library of tested BCs that are published in this book.
Need a simple, easy-to-use drop chart for your rifle? Something you can tape right to the buttstock? Then check out Hornady’s handy Online Ballistics Calculator. This user-friendly calculator will compute your drops accurately, and output a handy “Cheat Sheet” you can print and attach to your rifle. Simply input G1 or G7 BC values, muzzle velocity, bullet weight, zero range and a few other variables. Click “Calculate” and you’re good to go. You can select the basic version, or an advanced version with more data fields for environmental variables (altitude, temperature, air pressure, and humidity). You can also get wind drift numbers by inputing wind speed and angle.
Conveniently, on the trajectory output, come-ups are listed in both MOA and Mils — so this will work with either MOA clicks or Mil-based clicks. There are more sophisticated ballistics solvers available on the web (such as the outstanding Applied Ballistics Online Calculator), but the Hornady Calculator is very simple and easy to use. If you just want a basic drop chart, you may want to check this out.
These four photos show the substantial changes in the shock wave and turbulence patterns for the same 7.5mm bullet at different velocities. The “M” stands for Mach and the numerical value represents the velocity of the bullet relative to the speed of sound at the time of the shot. Photos by Beat Kneubuehl.
“Going transonic” is generally not a good thing for bullets. The bullet can lose stability as it enters the transonic zone. It can also become less slippery, losing BC as a consequence of dynamic instability. In this video, Bryan Litz of Applied Ballistics analyzes what happens to bullet stability (and BC) as projectiles approach the speed of sound. Transonic effects come into play starting about Mach 1.2, as the bullet drops below 1340 fps.
Transonic Ballistics Effects Explainedby Bryan Litz
What happens when the bullet slows to transonic speed, i.e. when the bullet slows to about 1340 feet per second? It is getting close to the speed of sound, close to the sound barrier. That is a bad place to fly for anything. In particular, for bullets that are spin-stabilized, what the sound barrier does to a bullet (as it flies near Mach 1) is that it has a de-stabilizing effect. The center of pressure moves forward, and the over-turning moment on the bullet gets greater. You must then ask: “Is your bullet going to have enough gyroscopic stability to overcome the increasing dynamic instability that’s experienced at transonic speed?”
Some bullets do this better than others. Typically bullets that are shorter and have shallow boat-tail angles will track better through the transonic range. On the contrary, bullets that are longer… can experience a greater range of pitching and yawing in the transonic range that will depress their ballistic coefficients at that speed to greater or lesser extents depending on the exact conditions of the day. That makes it very hard to predict your trajectory for bullets like that through that speed range.
When you look at transonic effects on stability, you’re looking at reasons to maybe have a super-fast twist rate to stabilize your bullets, because you’re actually getting better performance — you’re getting less drag and more BC from your bullets if they are spinning with a more rigid axis through the transonic flight range because they’ll be experiencing less pitching and yawing in their flight.
To determine how bullets perform in the “transonic zone”, Bryan did a lot of testing with multiple barrels and various twist rates, comparing how bullets act at supersonic AND transonic velocities. Bryan looked at the effect of twist rates on the bullets’ Ballistic Coefficient (BC). His tests revealed how BC degrades in the transonic zone due to pitching and yawing. Bryan also studied how precision (group size) and muzzle velocity were affected by twist rates. You may be surprised by the results (which showed that precision did not suffer much with faster barrel twist rates). The results of this extensive research are found in Bryan’s book Modern Advancements in Long Range Shooting.
Bryan notes: “A lot of gunpowder was burned to get these results and it’s all published in layman’s terms that are easy to understand”. If you’re interested in learning more about transonic bullet stability, you may want to pick up a copy of Bryan’s book.
Someone spending thousands of dollars on a once-in-a-lifetime hunt might consider getting Geovid rangefinding binoculars. Leica’s award-winning Geovid combines a superb binocular optic with a laser rangefinder AND a ballistic computer. With this single device you can spot your game, find the distance to your target, and calculate the elevation correction. Geovids even take a micro-SD card so you can upload your customized ballistics table.
At around $3200.00 (street price) Geovids are very expensive, but for a serious hunter the Geovid’s capabilities justify the price*. The glass is excellent, the rangefinder offers outstanding performance, and you never have to pull out a PDA or mobile device to run ballistics. The Geovid even does angle correction and can output elevation click values. With the Geovid, you have one tool that does three jobs exceptionally well. When you’re climbing a mountain in pursuit of a Trophy Elk, carrying less gear makes sense.
Now through October 31, 2015 you can save $300.00 on a new 8×42 Geovid HD-B, or 10×42 Geovid HD-B. That makes this state-of-the-art tool much more affordable. To get a $300.00 mail-in rebate from Leica, submit a sales receipt with the Leica Rebate Form.
*We have a good friend who works as a professional hunting guide and gunsmith in New Mexico. For years he made do with well-used Steiner binoculars and an older Leica LRF. On our last visit to NM, he proudly showed us his new Leica Geovid. I told him: “John, those Geovids cost a fortune… are they really worth the money?” He told me: “On one of my first hunts after getting the Geovid, I took along the Steiners for comparison. It was late in the day. I glassed a ridgeline about 700 yards away with the Steiners, and saw nothing. Then I got out the Geovid, looked at the same area and saw two large Elk in among some trees. That made the hunt a success for me and my client. Yes the Geovids are worth it… the glass really makes a difference in low light. And I can range as I’m spotting — that’s a big deal.”
If you are considering the Geovids, you’ll find that Geovid owners have high praise for these rangefinding binoculars. Here are reviews from verified purchasers who have used Geovids on hunts:
“Optical quality is second to none, these binos are in a class by themselves (the only competition IMHO are the Swarovski EL Range). Direct comparison of optic image quality to my lesser-brand binos really demonstrated the difference for me. The image is bright and clear across the entire field of view which is also wider than my standard 10×42 binos. Low-light gathering capability at dawn and dusk is considerably better than my lesser brands and should extend my evening hunting times by another 5 to 10 minutes. The laser ranging capability is amazing! The reading is almost instantaneous[.] The display is a red open target square that’s easy to see in all light conditions.” — Jackson611
“These Binos are the best range-finders on the market, not even talking about the glass yet. The range report is almost instantaneous. If you choose to load your ballistics data on the SD card you will be glad you did. It gives you bullet drop out to 1000 yards. Now let’s get to the glass. I have Swarovski 15×56 binos. These Leicas are just as clear, but small enough to wear around your neck. The price is high, but I learned a long time ago, that you get what you pay for with optics. And if you hunt out west, your optics will make or break your hunt.” — Matt
Here’s a great tip from Forum member Greg C. (aka “Rem40X”). Greg has created a trajectory table with windage and elevation data for various distances and wind speeds. Greg prints out a compact version of his drop chart to place on his rifle. While many shooters tape a ‘come-up’ table on their buttstock, Greg has a better solution. He tapes the trajectory table to the outside of his front flip-up scope cover. This way, when he flips up the cover, his data is displayed for easy viewing right in front.
With your ‘come-up’ table on the flip-up cover you can check your windage and elevation easily without having to move up off the rifle and roll the gun over to look at the side of the stock. Greg tells us: “Placing my trajectory table on the front scope cover has worked well for me for a couple of years and thought I’d share. It’s in plain view and not under my armpit. And the table is far enough away that my aging eyes can read it easily. To apply, just use clear tape on the front objective cover.”