Tech Tip by Doc Beech, Applied Ballistics Support Team
I am going to hit on some key points when it comes to bullet pointing. How much pointing and trimming needed is going to depend on the bullet itself. Specifically how bad the bullets are to begin with. Starting out with better-quality projectiles such as Bergers is going to mean two things. First that you don’t need to do as much correction to the meplat, but also that the improvement is going to be less. NOTE: We recommend you DO NOT POINT hunting bullets. Pointing can affect terminal performance in a bad way.
NOTE the change in the bullet tip shape and hollowpoint size after pointing:
Don’t Over-Point Your Bullets
What is important here is that you never want to over-point. It is far better to be safe, and under-point, rather than over-point and crush the tips even the slightest bit. To quote Bryan Litz exactly: “Best practice is to leave a tiny air gap in the tip so you’re sure not to compress the metal together which will result in crushing. Most of the gain in pointing is taking the bullet tip down to this point. Going a little further doesn’t show on target”. So in essence you are only bringing the tip down a small amount… and you want to make sure you leave an air gap at the tip.
Also keep in mind, bullet pointing is one of those procedures with variable returns. If you only shoot at 100-200 yards, bullet pointing will likely not benefit you. To see the benefits, which can run from 2 to 10% (possibly more with poorly designed bullets), you need be shooting at long range. Bryan says: “Typically, with pointing, you’ll see 3-4% increase in BC on average. If the nose is long and pointy (VLD shape) with a large meplat, that’s where pointing has the biggest effect; up to 8% or 10%. If the meplat is tight on a short tangent nose, the increase can be as small as 1 or 2%.” For example, If you point a Berger .308-caliber 185gr Juggernaut expect to only get a 2% increase in BC.
Should You Trim after Pointing?
Sometimes you can see tiny imperfections after pointing, but to say you “need” to trim after pointing is to say that the small imperfections make a difference. Bryan Litz advises: “If your goal is to make bullets that fly uniformly at the highest levels, it may not be necessary to trim them.” In fact Bryan states: “I’ve never trimmed a bullet tip, before or after pointing”. So in the end it is up to you to decide.
Pointing is Easy with the Right Tools
The process of pointing in itself is very simple. It takes about as much effort to point bullets as it does to seat bullets. We are simply making the air gap on the tip of the bullet ever-so smaller. Don’t rush the job — go slow. Use smooth and steady pressure on the press when pointing bullets. You don’t want to trap air in the die and damage the bullet tip. You can use most any press, with a caliber-specific sleeve and correct die insert. The Whidden pointing die has a micrometer top so making adjustments is very easy.
Bryan Litz actually helped design the Whidden Bullet Pointing Die System, so you can order the Pointing Die and Inserts directly from Applied Ballistics. Just make sure that you pick up the correct caliber sleeve(s) and appropriate insert(s). As sold by Applied Ballistics, the Whidden Bullet Pointing Die System comes with the die, one tipping insert, and one caliber-specific sleeve. To see which insert(s) you need for your bullet type(s), click this link:
The better, up-to-date ballistics programs let you select either G1 or G7 Ballistic Coefficient (BC) values when calculating a trajectory. The ballistic coefficient (BC) of a body is a measure of its ability to overcome air resistance in flight. You’ve probably seen that G7 values are numerically lower than G1 values for the same bullet (typically). But that doesn’t mean you should select a G1 value simply because it is higher.
Some readers are not quite sure about the difference between G1 and G7 models. One forum member wrote us: “I went on the JBM Ballistics website to use the web-based Trajectory Calculator and when I got to the part that gives you a choice to choose between G1 and G7 BC, I was stumped. What determines how, or which one to use?”
The simple answer to that is the G1 value normally works better for shorter flat-based bullets, while the G7 value should work better for longer, boat-tailed bullets.
G1 vs. G7 Ballistic Coefficients — Which Is Right for You?
G1 and G7 refer both refer to aerodynamic drag models based on particular “standard projectile” shapes. The G1 shape looks like a flat-based bullet. The G7 shape is quite different, and better approximates the geometry of a modern long-range bullet. So, when choosing your drag model, G1 is preferrable for flat-based bullets, while G7 is ordinarily a “better fit” for longer, boat-tailed bullets.
Drag Models — G7 is better than G1 for Long-Range Bullets
Many ballistics programs still offer only the default G1 drag model. Bryan Litz, author of Applied Ballistics for Long Range Shooting, believes the G7 standard is preferrable for long-range, low-drag bullets: “Part of the reason there is so much ‘slop’ in advertised BCs is because they’re referenced to the G1 standard which is very speed sensitive. The G7 standard is more appropriate for long range bullets. Here’s the results of my testing on two low-drag, long-range boat-tail bullets, so you can see how the G1 and G7 Ballistic coefficients compare:
G1 BCs, averaged between 1500 fps and 3000 fps:
Berger 180 VLD: 0.659 lb/in²
JLK 180: 0.645 lb/in²
The reason the BC for the JLK is less is mostly because the meplat was significantly larger on the particular lot that I tested (0.075″ vs 0.059″; see attached drawings).
For bullets like these, it’s much better to use the G7 standard. The following BCs are referenced to the G7 standard, and are constant for all speeds.
Many modern ballistics programs, including the free online JBM Ballistics Program, are able to use BCs referenced to G7 standards. When available, these BCs are more appropriate for long range bullets, according to Bryan.
[Editor’s NOTE: BCs are normally reported simply as an 0.XXX number. The lb/in² tag applies to all BCs, but is commonly left off for simplicity.]
One recent trend in F-TR competition is the use of low-profile, benchrest-type stocks shot with a light hand-hold and little or no face contact. For this method of F-TR shooting to work, you need the right equipment, and practice a “minimalist” shooting technique. One of the pioneers in this style of F-TR shooting is action-maker John Pierce of Pierce Engineering. Above you can see John shooting one of his F-TR rifles at the 2015 Canadian F-Class Championships. Note the straight-line stock and see how the adjustable bipod is set quite low to the ground (in fact the bipod’s arms are almost straight out).
Members of the Michigan F-TR Team, including Bryan Litz, have used similar rigs with success. Bryan said it took a while to adapt his shooting technique to this kind of rig, but there is a pay-off. Armed with a Pierce-built F-TR rifle, Bryan won his first-ever F-TR Match. Bryan explains the technique he uses when shooting this kind of rifle:
“Coming over from sling shooting, I knew there would be unique challenges to F-TR which I wanted to learn prior to (not during) a major tournament. I learned a new shooting position which doesn’t involve drawing the right knee up. For F-TR I get more straight behind the gun rather than at an angle. I found that the rifle shoots best with very light cheek, shoulder and grip pressure, approaching free recoil. This is how Eric Stecker shot his similar rifle into second place in the SW Nationals [with high X-Count by a large margin]. I learned the rifle’s sensitivity to different bipod and rear bag supports, and found the best buttplate position to allow the rifle to track and stay on target after recoil. This set-up shot best with a mostly free-recoil approach, that means ‘hovering’ over the comb, rather than resting your head on the stock. This took some ‘getting used to’ in terms of neck and back muscle tone. These are the kind of details I think it’s important to focus on when entering a new discipline.”
Bryan’s Pierce-built F-TR rig is a tack-driver: “I can certainly vouch for this set-up! In last weekend’s mid-range State Championship in Midland, MI, I shot my Pierce rifle into first place with a 598-44X (20 shots at 300, 500 and 600). Once you get used to the positioning and way of shooting these rifles, they just pour shots through the center of the target.”
Pierce F-TR Rifles with Scoville Stocks
Shown below are three complete Pierce F-TR rifles, along with a barreled action for comparison. The carbon-fiber/composite stocks are built by Bob Scoville. These Scoville stocks are very light, yet very strong and very stiff.
Bryan Litz has produced an informative new video on the subject of bullet stability. The video explains how stability is related to spin rate (or RPM), and how RPM, in turn, is determined by barrel twist rate and velocity. For long-range shooting, it is important that a barrel have a fast-enough twist rate to stabilize the bullet over its entire trajectory.
Detailed Bullet Stability Article
To complement the above video, Bryan has authored a detailed article that explains the key concepts involved in bullet stabilization. Bryan explains: “Bullet stability can be quantified by the gyroscopic stability factor, SG. A bullet that is fired with inadequate spin will have an SG less than 1.0 and will tumble right out of the barrel. If you spin the bullet fast enough to achieve an SG of 1.5 or higher, it will fly point forward with accuracy and minimal drag.”
There is a “gray zone” of marginal stability. Bryan notes: “Bullets flying with SGs between 1.0 and 1.5 are marginally stabilized and will fly with some amount of pitching and yawing. This induces extra drag, and reduces the bullets’ effective BC. Bullets in this marginal stability condition can fly with good accuracy and precision, even though the BC is reduced. For short range applications, marginal stability isn’t really an issue. However, shooters who are interested in maximizing performance at long range will need to select a twist rate that will fully stabilize the bullet, and produce an SG of 1.5 or higher.”
Berger Twist-Rate Stability Calculator
On the updated Berger Bullets website you’ll find a handy Twist-Rate Stability Calculator that predicts your gyroscopic stability factor (SG) based on mulitiple variables: velocity, bullet length, bullet weight, barrel twist rate, ambient temperature, and altitude. This very cool tool tells you if your chosen bullet will really stabilize in your barrel.
LIVE DEMO BELOW — Just enter values in the data boxes and click “Calculate SG”.
Top photo with bullet by Werner Mehl, www.kurzzeit.com, all rights reserved.
The Kestrel weather meter is an invaluable tool for shooters. While the standard model Kestrels can record wind and atmospheric conditions, the advanced Kestrel 4500 Shooter’s Weather Meter with Applied Ballistics incorporates a built-in ballistics program developed by Bryan Litz of Applied Ballistics. This is a very powerful tool, but it can be a bit complicated to program at first.
In this detailed 22-minute video, John McQuay of 8541 Tactical shows how to input firearm specs, MV, and BC into a Kestrel 4500 NV (Applied Ballistics model). This handy unit combines a Kestrel Weather meter with a full-fledged ballistics computer.
Step-by-step the video shows how to set up all the important variables. The video shows how to input Muzzle Velocity, Bullet BC (G1 or G7), Zero Distance and the other key ballistics variables. In addition, the video explains how to input gun-specific data such as bore height, barrel twist rate, and barrel rifle twist direction (right-hand vs. left-hand). (Twist direction comes into play in long range spin drift calculations).
If you own a Kestrel 4500 NV (Applied Ballistics), we think you’ll find this video helpful — particularly when it comes to setting up some of the lesser-known data items. The video also offers tips on navigating through the menus most efficiently.
You’ve heard the rumors of a new ultra-high BC 7mm bullet from Berger. Well the rumors are true. Berger is now shipping test samples of its new 195-grain 7mm Elite Hunter Bullet, part # 28550. This bullet boasts jaw-droping 0.755 G1 and 0.387 G7 Ballistic Coefficients. Those are stunningly high numbers. Compare that to 0.674 G1 and 0.345 G7 BCs for the previous BC king amoung 7mm projectiles, Berger’s own 180 gr Match Hybrid Target.
We’re certain the “orange box” 195gr Elite Hunter will soon see use by F-Open competitors. This ultra-high BC projectile could be a “game-changer” in long-range shooting when used in cartridges such as the 7mm RSAUM, 7mm WSM and even bigger 7mm magnums. Recommended barrel twist rate is 1:8.3″, with a stated “minimum” twist of 1:9″.
We ran some numbers through the JBM Ballistics program*, comparing the new 195-grainer with Berger’s popular 180gr Hybrid. The results were eye-opening. The projected drop is significantly less. Most importantly, this new 195gr bullet moves a LOT less in the wind at 1000 yards. This should translate into higher scores for F-Class shooters — that wide ‘9’ shot may stay in the ’10’ ring. In fact, based on the JBM trajectory calculation, with a 10 mph 90° crosswind, the 195gr bullet will have over SEVEN INCHES less wind drift at 1000 yards than the 180-grainer (46.0″ vs. 53.1″). That’s a big deal, a very big deal…
Drop at 800 yards: 135.5″
Windage at 800 yards: 28.0″
Drop at 800 yards: 140.9″
Windage at 800 yards: 32.2″
Drop at 1000 yards: 237.9″ Windage at 1000 yards: 46.0″
Drop at 1000 yards: 250.0″ Windage at 1000 yards: 53.1″
Drop at 1200 yards: 380.1″
Windage at 1200 yards: 69.6″
Drop at 1200 yards: 404.2″
Windage at 1200 yards: 81.2″
* Variables were set to 55.4° F, 1000′ elevation, standard Atmosphere at Altitude, 2950 fps muzzle velocity. You can use JBM Ballistics to compare at different MVs.
UPDATE from Berger
After we broke this story, Berger Bullets wanted to clarify some points. Berger explained:
“This bullet is in the testing phase and has not been officially launched. We sent this bullet out for some public testing to make sure that we had positive feedback before we moved forward with an official launch.
We want to see how it performs in multiple rifles and different chamberings.
This bullet was made for hunting purposes, we realize there are shooters who would like to take these out for target shooting, like F-Class. However, we are not certain how they will perform. If things are successful we would like to eventually launch a target version.”
The information on the label you have pictured on your article has been updated.
Twist Rates
Minimum: 1:9″
Optimum: 1:8.3″
Ballistic Coefficients
G7 BC: .387
G1 BC: .754
How to Get Berger’s 195gr Elite Hunter Bullets
These bullets are so new you won’t find them on the Berger Bullets website yet. As Berger explained above, these bullets are still in a final testing phase. Most of the early production runs have been sent out for testing purposes. If you have specific questions, you can send an email to Berger via this CONTACT PAGE. Otherwise you can phone Berger, Mon-Fri, at 714-441-7200. Please try the email option first.
Applied Ballistics has created a new series of YouTube videos about precision long range shooting. Featuring ace long-range shooter and professional ballistician Bryan Litz, these videos address various topics of interest to long-range marksmen. In this week’s video, the second in the series, Bryan Litz examines the most common causes of ballistics shooting errors at Long Range.
Watch Applied Ballistics Video about Common Mistakes in Long Range Shooting:
Bryan Litz of Applied Ballistics often hears the question: “What are the main reasons people miss their target at long range?” To answer that question, in this video, Bryan explains the most important variables in Long Range shooting. Bryan says: “Probably the number one thing is range — you have to have a [precise] range to your target because your bullet is dropping, and to hit the target you need to correct for bullet drop.” Distance may be indicated on the target bay (or berm), but for open ranges you should ascertain distance-to-target with a quality laser rangefinder. Even when the distance to target is shown with a sign or marker, you may want to confirm the distance with your rangefinder. (You may be surprised — we’ve seen marked target distances at commercial ranges off by 25+ yards!) Bryan says: “Get a good laser range to the target and you’ll be within a couple yards”.
After distance to target, the most important variable is the wind. This is the most challenging factor because the wind is constantly changing. Bryan explains: “After 300 or 400 yards, the wind [will] move your shots off the target if you don’t correct for it. The best way to account for the wind is to measure it at your location with a Kestrel. The Kestrel can give you the speed and direction of the wind at your location, which can baseline your wind call for your long-range shot.” Bryan acknowledges that there will still be variables: “The wind isn’t always blowing the same downrange as at your location… and the wind is always changing”. Bryan notes that you need to account for variances in wind between the time you gauge the wind angle and velocity and the time you actually you take your shot.
Photo shows Bryan Litz (on right) and tester Mitchell Fitzpatrick. Bryan said: “Only 2,445 rounds to go! We’re testing over 50 ammo types in five different twist barrels… science can be exhausting!”
Do you know the actual BC (Ballistic Coefficient) of your rimfire ammunition? Well Applied Ballisitics will soon have answers for you. Bryan Litz and his team of testers have been working on a Herculean project. They’ve been testing over fifty types of .22 LR ammo, using five different twist-rate barrels.
Applied Ballistics has just released a fully upgraded version of its popular Tactical App for Android devices. Bryan Litz tells us: “AB Tactical has received a major overhaul (including a new Bullet Library with over 420 options). The upgrade will require that you uninstall the previous version that you have of the application and then install this new version. This is due to the complete re-write of the internal database handling.” NOTE: You need to record your gun-specific data before you install the new version. Details of the updated AB Tactical App are featured in the new 19-page USER Manual.
NOTE: This upgrade is for the Applied Ballistics Tactical Version only. There is no iPhone version of this App, and this is not the standard app that can be purchased from Google Play, or iTunes.
The new version of AB Tactical has a host of important enhancements:
Berger Twist-Rate Stability Calculator
On the updated Berger Bullets website you’ll find a handy Twist-Rate Stability Calculator that predicts your gyroscopic stability factor (SG) based on mulitiple variables: velocity, bullet length, bullet weight, barrel twist rate, ambient temperature, and altitude. This very cool tool tells you if your chosen bullet will really stabilize in your barrel.
LIVE DEMO BELOW — Just enter values in the data boxes and click “Calculate SG”.