Sierra Test Reveals How Velocity Varies with Ammo Temperature
In this .308 Win test, 70° F ammo shot 96 FPS slower than ammo heated to 130.5° F. And the 130.5° ammo was 145 fps faster than ammo right out of the freezer (at 25.5° F). That’s a huge difference…
EDITOR’s NOTE: The Sierra tester does not reveal the brand of powder tested here. Some powders are much more temp sensitive than others. Accordingly, you cannot extrapolate test results from one propellant to another. Nonetheless, it is interesting to see the actual recorded velocity shift with ammo temperature variations in a .308 Win.
Written by Sierra Chief Ballistician Tommy Todd
This story originally appeared in the Sierra Bullets Blog
A few weeks ago I was attending the Missouri State F-Class Match. This was a two-day event during the summer and temperatures were hot one day and hotter the next. I shot next to a gentleman who was relatively new to the sport. He was shooting a basically factory rifle and was enjoying himself with the exception that his scores were not as good as he hoped they would be and he was experiencing pressure issues with his ammunition. I noticed that he was having to force the bolt open on a couple of rounds. During a break, I visited with him and offered a couple of suggestions which helped his situation somewhat and he was able to finish the match without major issues.
He was shooting factory ammunition, which is normally loaded to upper levels of allowable pressures. While this ammunition showed no problems during “normal” testing, it was definitely showing issues during a 20-round string of fire in the temperatures we were competing in. My first suggestion was that he keep his ammunition out of the direct sun and shade it as much as possible. My second suggestion was to not close the bolt on a cartridge until he was ready to fire. He had his ammo in the direct sunlight and was chambering a round while waiting on the target to be pulled and scored which can take from a few seconds to almost a minute sometimes.
This time frame allowed the bullet and powder to absorb chamber [heat] and build pressure/velocity above normal conditions. Making my recommended changes lowered the pressures enough for the rifle and cartridge to function normally.
Testing Effects of Ammunition Temperature on Velocity and POI
After thinking about this situation, I decided to perform a test in the Sierra Bullets underground range to see what temperature changes will do to a rifle/cartridge combination. I acquired thirty consecutive .30 caliber 175 grain MatchKing bullets #2275 right off one of our bullet assembly presses and loaded them into .308 Winchester ammunition. I utilized an unnamed powder manufacturer’s product that is appropriate for the .308 Winchester cartridge. This load is not at the maximum for this cartridge, but it gives consistent velocities and accuracy for testing.
I took ten of the cartridges and placed them in a freezer to condition.
I set ten of them on my loading bench, and since it was cool and cloudy the day I performed this test I utilized a floodlight and stand to simulate ammunition being heated in the sun.
I kept track of the temperatures of the three ammunition samples with a non-contact laser thermometer.
The rifle was fired at room temperature (70 degrees) with all three sets of ammunition. I fired this test at 200 yards out of a return-to-battery machine rest. The aiming point was a leveled line drawn on a sheet of paper. I fired one group with the scope aimed at the line and then moved the aiming point across the paper from left to right for the subsequent groups.
NOTE that the velocity increased as the temperature of the ammunition did.
The ammunition from the freezer shot at 2451 fps.
The room temperature ammunition shot at 2500 fps.
The heated ammunition shot at 2596 fps.
The tune window of the particular rifle is fairly wide as is shown by the accuracy of the three pressure/velocity levels and good accuracy was achieved across the board. However, notice the point of impact shift with the third group? There is enough shift at 200 yards to cause a miss if you were shooting a target or animal at longer ranges. While the pressure and velocities changed this load was far enough from maximum that perceived over pressure issues such as flattened primer, ejector marks on the case head, or sticky extraction did not appear. If you load to maximum and then subject your ammunition to this test your results will probably be magnified in comparison.
This test showed that pressures, velocities, and point-of-impact can be affected by temperatures of your ammunition at the time of firing. It’s really not a bad idea to test in the conditions that you plan on utilizing the ammo/firearm in if at all possible. It wouldn’t be a bad idea to also test to see what condition changes do to your particular gun and ammunition combination so that you can make allowances as needed. Any personal testing along these lines should be done with caution as some powder and cartridge combination could become unsafe with relatively small changes in conditions.
Similar Posts:
- How Ammo Temp Affects Pressure, Velocity, and Point of Impact
- How Ammo Temp Can Affect Velocity — Freezing to 130 degrees F
- How Ammo Temperature Affects Velocity, Pressure, and POI
- Effects of Heat on Powder Performance
- Beat the Heat — Endeavor to Keep Your Ammo Cool in Summer
Share the post "Sierra Test Reveals How Velocity Varies with Ammo Temperature"
Tags: ammo, Ammunition, POI, Pressure, Sierra Bullets, Temp Sensitivity, Temperature, Tommy Todd, Velocity
Excellent test. I think this is of value considering so many venues, competition take place in the summer. We’ve all learned to protect our ammunition from heat. The problem is during competition keeping ammunition at a specific temperature range is most unlikely.
Maybe the real value is testing your specific load and realizing the impact the choice of powder makes.
Temperature testing of ammunition is standard military practice. Normally, for NATO countries, in three zones: -40C, +21C and +63C (-40F, +70F +145F). The average velocity (well pressure really) in each region used in the various ballistic tables and fire control systems.
What I found really interesting (and a little confusing) is that the fastest ammo printed lower than the rest – how did that happen? Wouldn’t the POI at a given distance shift upwards as the velocity increased?
Changing the velocity of a round changes the time that the bullet leaves the muzzle (barrel time). So the faster round left the muzzle when the barrel harmonics had the muzzle at a lower point in its cycle of vibrations. That is why a faster round would shoot lower. You can change the point of impact of a round by changing bullets and powders but keeping the same velocity due to changes in barrel times.
Thank you. Your explanation makes sense. I’ve noticed it myself during load development but could not figure out why faster velocities sometimes printed lower. Now I know.